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LONG-TERM GOALS
To develop an efficient, community-based coupled biogeochemical-physical modeling framework that will
enable the addition of new oceanographic processes in a straightforward and transparent manner, allowing new
model structures to be developed and explored as our understanding of ocean ecology and biogeochemistry
improves. To develop such a modeling framework within the context of our initial, specific overarching
scientific focus: an inter-comparison study between the subtropical-subpolar gyre systems of the North Pacific
and North Atlantic basins, including an explicit coastal component, with particular emphasis on understanding:

• new paradigms for physical and chemical control of plankton community structure and function,
• the consequences for biogeochemical cycling,
• the effects of sub-mesoscale and mesoscale forcing, and
• the dynamics of long-term, climate driven ecosystem regime shifts.

In support of these, we have programs to meet the challenge of merging observations and models through:
• advanced data assimilation techniques,
• the development of interdisciplinary data products for incorporation into models, and
• the application of new statistical and complex dynamical systems analysis techniques.

The merging of observations and models supports a rigorous model validation program that is central to
PARADIGM.
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OBJECTIVES
To improve our understanding of the mean state, seasonal cycle, and natural interannual to decadal variability of
global and basin-scale biogeographical patterns. Why do different ecosystems reside where they do? What
combination of forcing and biological responses drives the observed long-term variability and apparent
ecosystem regime shifts? The intrinsic scales of ocean ecology are set by the growth and removal of
phytoplankton, with time-constants of one to a few days. Our project scope, therefore, encompasses the range of
coupled dynamics of ocean ecology, biogeochemistry, and physics on scales from sub-diurnal to multi-decadal
and submesoscale to global.
     The project is divided into four major scientific themes, with associated fundamental questions:

1) Biogeochemical cycles. What factors govern phytoplankton biomass, productivity and export, the net
remineralization of organic matter below the euphotic zone, and the spatial (e.g., biogeographical
regimes) and temporal (e.g., climate regime shifts) variations in these global processes?
2) Community structure. What processes govern plankton community structure and function and how
do physical-chemical-biological interactions influence biogeochemical processes in the ocean system?
3) Scales of physical forcing. How do mesoscale and sub-mesoscale physical variability impact
ecosystem fluxes and community structure?
4) Advanced interdisciplinary models. How do we best merge observations and models?

APPROACH AND WORK PLAN
PARADIGM is a group of 16 scientists committed to building and deploying new, advanced models of ecology
and biogeochemistry for understanding and predicting the future states of the ocean. The group combines
expertise of observers and modelers, ecologists and physicists, biogeochemists and numerical specialists. Our
overall scientific goal is a rigorous, model- and observation-based intercomparison of
ecosystem/biogeochemical dynamics of the North Pacific and Atlantic subtropical - subpolar gyres. Our central
objective is creation of new global ocean biogeochemistry community models, comprising complex ecosystem
dynamics based on functional groups (e.g., Archaea, diatoms, copepods, gelatinous predators), individual
keystone species (e.g., Trichodesmium, Euphausia superba) and multielement limitation and cycling (e.g., C, N,
P, Si, Fe). The physical model platform is composed of a hierarchy of mature, general circulation models each
the focus of extensive community model development programs. PARADIGM models will be capable of
emergent behavior testing the hypothesis that fundamental regime shifts occur in response to climate change.
Community models will be developed by interdisciplinary teams devoted to five program elements: (1) data
fusion, synthesis and validation; (2) ecosystem model development; (3) high-resolution basin scale and regional
process studies; (4) focus sites (i.e., regional test-beds) and (5) numerical method development (including data
assimilation).

WORK COMPLETED
There has been excellent scientific progress in the fourth year of the program. Because of the space limitations
imposed upon this report, we are here only able to present a select few of our efforts. Last year we highlighted
our community global modeling effort. In this report we present progress towards modeling fundamental
ecosystem behavior. The following summaries are excerpted from an invited article for Oceanography Magazine
entitled “Modeling Ocean Ecosystems: The PARADIGM Program” that will appear in March 2006. More
complete individual program reports from all PARADIGM sub-programs are available upon request.

RESULTS - Contemporary Approaches to Modeling Marine Ecosystems
Computer Generated Functional Groups of Phytoplankton and Natural Selection
New observational approaches, including molecular and genetic probes, show great levels of diversity in the
marine ecosystem, with several functional types within species populating distinct physical domains (Ferris and
Palenik, 1998; Johnson et al., 2005). We therefore seek to adopt modeling strategies that can interface with, and
help interpret the new, genomic view of ocean ecology. In one PARADIGM study, we are exploring an
approach to marine ecosystem modeling which explicitly brings to bear natural selection (Follows, Grant,
Dutkiewicz and Chisolm, in prep). Instead of imposing the community structure, we construct a model with
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many tens or hundreds of functional groups of phytoplankton, each of which has characteristics determined in
part by chance, from within plausible bounds. Embedded initially in a one-dimensional, oceanic physical
framework, plausible and robust community structures emerge in ensemble integrations of this model (Figure 1,
Follows et al., in prep) molded by the physical environment and nutrient availability (Tilman, 1977; Tozzi et al.,
2004; Johnson et al., 2005). We are also exploring this strategy for modeling the ecosystem in more complex
physical and biogeochemical environments.

Figure 1. (a) Modeled annual mean phytoplankton phosphorus concentration (µmol P kg-1) and (b) annual mean phosphate
concentration (µmol kg-1) as a function of depth from an ensemble of twenty integrations with a one-dimensional ecosystem
model (Follows et al., in prep). The idealized model represents the annual cycle by imposing sinusoidal cycles of sea-
surface temperature, which drives wintertime convection, and insulation. Winter mixed layers reach 120m depths, shoaling
to 25m in the summer. Thirty-six functional groups of phytoplankton are initialized in each integration, differing in light
sensitivity and phosphate half saturation coefficient assigned randomly within plausible ranges. The figure shows the
annual mean phytoplankton and phosphate profiles from the tenth year of integration of each of the twenty ensemble
members. The simple environment with only two resources, light and phosphate, supports limited diversity and selecting
for a surface-oriented, “high-light, low-nutrient” functional group and a “low-light, high-nutrient” functional group forming
a deep chlorophyll maximum in each integration. Of a possible 720 functional groups (the total from all ensemble
members) only about 40 are viable (left panel) after a decade of competition. The nature of the viable functional groups is
qualitatively consistent and robust between ensemble members, a consequence of the control of the resource environment
(Tilman, 1977). The annual mean phosphate profiles of the ensemble members are dependent on ecosystem structure but
closely consistent (right panel).

The Microbial Foodweb - Microzooplankton and Bacteria
Defining and/or generating functional groups of phytoplankton and biogeochemical functions and their
environmental sensitivities is only one step in the process of modeling marine ecosystems. Ecological processes
must be described by modeling the fate of materials produced by each functional group. There are two basic
pathways of material flow from the phytoplankton in a functional or biogeochemical view of the marine
ecosystem. The first is the export pathway by which biogenic particles and semi-labile dissolved organic matter
are exported from the surface ocean to the ocean interior below. The second, and usually the larger, is the
recycling pathway within the upper ocean that remineralizes organic matter into inorganic nutrients and carbon
dioxide. Unicellular heterotrophic microbes, protozoans and microzooplankton dominate nutrient recycling. As
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a consequence of dominance of primary production (see above) and recycling by microbes, the ocean ecosystem
has in essence a background recycling web of microbes and an episodic export foodweb of larger organisms
(diatoms and copepods); Figure 2. As modelers our challenge is to represent the functions of export and
recycling and their control and variability in space and time without expanding model complexity beyond
tractable limits.

The challenge is compounded by the realization that a wide range of physiological and trophic
capabilities exists besides the traditional autotroph and heterotroph modes – mixotrophy and photoheterotrophy
– to name just two. Our job as modelers now lags considerably behind new observations as far as incorporating
recent genomic and ecological discoveries of the diverse and complicated foodwebs in the open sea. Despite the
exploding genomic information on microbial organisms, our understanding of their role in regulating elemental
cycles is still insufficient for much more than a crude ‘black box approach’ to incorporating microbial processes
in models. One approach is to apply the ‘background’ state hypothesis whereby the microbial foodweb is a
relatively stable presence in surface waters, through which nutrients escape to fuel larger cells, higher trophic
levels and vertical flux only when physical and biogeochemical perturbations supply nutrients to the surface
layer in excess of the microbes’ ability to absorb them (reviewed by Cullen et al. 2002). This hypothesis is being
tested by analysis of field data, along with complementary modeling of food web responses to varying nutrient
supply, including purposeful fertilization with iron (Denman et al., in press). Conventional models
underestimate the magnitude of recycling in ocean systems. Few models can address variations of nutrient
stoichiometric ratios and formation and cycling of DOM, and a greater level of model sophistication is needed to
include diverse functional groups and trophic modes.

Figure 2. Oceanic plankton foodweb, after Laws et al. (2000). The upper pathway initiated by large phytoplankton
contributes primarily to export from the upper ocean. The lower pathway starting with small phytoplankton is mainly a
nutrient recycling pathway.  Solid arrows: flows of organisms and particulate matter (detritus and fecal pellets). Dashed
arrows: flows of dissolved organic matter (DOM). Dotted arrows: flows of regenerated inorganic nutrients. Note that all
organisms leak DOM but not all flows are depicted for clarity. All consumers release inorganic nutrients but not all arrows
are shown.
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Model Closure and Mesozooplankton – Emergent Behavior
With the recent emphasis in ‘biogeochemical’ ecosystem models on phytoplankton and recycling via the
microbial foodweb, early lessons on the sensitivity of marine ecosystem models to the formulation of the loss
terms associated with mesozooplankton grazing have been deemphasized (Fasham et al., 1990; Steele and
Henderson, 1992; Frost and Franzen, 1992; Edwards and Yool, 2000). Regional and global physical-biological
models typically utilize a classical predator-prey representation within a continuum-based ecosystem framework
that includes, at most, a limited number of pre-determined functional groups of phytoplankton and simplistic
grazer representations. Thus descriptions of the latter in biogeochemical models are generally rudimentary and,
perhaps more crucially, the continuum approach is inappropriate due to the life cycles and foraging behavior of
meta- and mesozooplankton. Indeed, their treatment may be more aptly considered a convenient means of
mathematical closure that can be a hindrance to achieving realistic simulations of the pelagic environment.
Critical questions that PARADIGM scientists are investigating include: Can we continue to develop models
with little or no validation of predicted zooplankton dynamics or parameterizations? Can we represent
mesozooplankton meaningfully without any life history development?  If not, can we represent the essence of
life history development in a compact form? Such an alternative approach is now being attempted with
behaviorally explicit numerical models that can explore how zooplankton feeding strategies and morphological
differences contribute to efficiency of consumption and recycling of particulate organic material.

As a first step toward incorporating emergent behavior into large-scale models’ grazing formulations, a
stochastic Lagrangian model has been developed that explicitly simulates the distinct feeding methods of three
prominent tropical copepod species: Clausocalanus furcatus; Paracalanus aculeatus; and Oithona plumifera.
The three components to copepod foraging are sampling ambit, area(s) of perception (sensory regions) and prey
perception (size preference). The first two components utilize characteristics ascertained through careful
behavioral studies (see Figure 3 caption) while prey size preference consists of increasingly reduced uptake
efficiency as prey diameter ranges below 15 microns. The final aspect of the model needed to accurately
simulate copepod foraging was a realistic prey field that was based on observed size spectra (Paffenhöfer et al.,
2003). With these components in place, size-partitioned grazing rates from the individual based model compared
very well with the observational data (see Figure 4 in Wiggert et al., 2005).

The simulation results indicate that adult copepod populations in an oligotrophic environment are
limited by prey concentration and/or predation but not by resource competition, though this question must
remain open until the full range of copepodite stages is included (Wiggert et al., 2005). Additionally, the
simulations demonstrate that their various foraging behaviors allows each species to access distinct sub-domains
of the prey spectrum; yet all three have the same prey concentration threshold above which their metabolic
needs can be attained. This implies that behaviorally induced prey size preferences contribute to the coexistence
of these copepod species in the dilute prey environment that they inhabit.



8

Figure 3: Clausocalanus furcatus (a) is a fast continuous swimmer (Mazzocchi and Paffenhöfer, 1999). Paracalanus
aculeatus (b) is a slow continuous swimmer that employs chemoreception and generates a feeding current (Paffenhöfer,
1984; Paffenhöfer, 1988). Oithona plumifera (c) is an ambush predator that uses long feathered setae to sense for
hydrodynamic signals emitted by its prey (Paffenhöfer and Mazzocchi, 2002; Svensen and Kiørboe, 2000). Representative
simulated sampling ambits are shown for each copepod species, with the corresponding sampling method illustrated in the
inset diagram. The start (large green star) and end (large blue star) points of each ambit are shown, along with intermediate
steps (small black stars) at 50 second intervals. The individual trajectories represent 5, 30 and 12 minutes respectively, with
corresponding travel distances of 4.2, 1.3 and 0.6 meters.

How Much Complexity is Enough?
Experience suggests that the answer to this question depends essentially on the specific context. PARADIGM
scientists are trying to model both the behavior of living organisms and the processes that trigger changes in that
behavior. A better question to ask is whether there are alternative approaches to compartment modeling that
might better capture changes both in ecosystem structure and in the behavior of individuals or groups of
organisms, in response to changes in the ocean environment.

So how can we proceed? Borrowing from the ‘scientific method’ for laboratory science we may develop
the model step by step, varying one parameter or process at a time while keeping all others constant and
examining the consequences on the overall system behavior and for the skill of the model in reproducing
pertinent observations. We should aim to add complexity only where there are appropriate observations by
which it can be constrained or evaluated (see Figure 4).
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Figure 4: Top down approach to developing coupled ocean biogeochemical + general circulation models: Start with a
model aimed at improving our understanding, depicted by the solid line with arrows.  ‘Iterate’ denotes the many times
through this loop of developing, testing, comparing with observations. Eventually modelers will step into the loop with the
dashed line where the objective is to forecast the future. Again ‘iterate’ indicates traveling around this loop many times
evaluating where the forecasts fail, identifying the weakness(es) in the model, then stepping back into the first loop to add
complexity to address the weakness(es) that have been identified.

If the model development is problem-driven then we might expect application of these principles to
allow two streams of ecosystem model development in the ocean: one stream for biogeochemical or carbon
cycle models, and one stream for fisheries foodweb models. This dual stream development may not be desirable,
but it has evolved over the last decade.

Genomics: Where Ocean Ecosystem Modeling May Need to Go
Genomics is the study of whole genomes of organisms. This field has been revolutionized in the past two
decades by a battery of molecular techniques including gene insertion and cloning, DNA sequencing and the
polymerase chain reaction (PCR) that recovers both common and rare genomes from the environment, even
when organisms cannot be grown in the lab. The field has made revolutionary contributions to ocean ecology
(Doney at al. 2004; DeLong and Karl 2005). The importance of genomic discoveries for ocean modelers is that
these new approaches are telling us about new aspects of previously modeled processes or organisms and also
about previously unknown organisms and processes that need to be modeled. Two examples illustrate the
challenges presented.

Genome-based probes were used to enumerate planktonic archaea in the mesopelagic water column in the
North Central Pacific Gyre and off the West Antarctic Peninsula (Karner et al. 2001; Church et al. 2003).
Archaea are structurally similar to bacteria (they are both prokaryotes) but are genetically distinct. With the
Bacteria and Eukarya, the Archaea form the three fundamental domains of life. They may be numerically
dominant in a large part of all ocean waters, but we are still not certain of what they do: current evidence
suggests they are chemoautotrophs, possibly nitrifiers (Francis et al. 2005). Models of nitrogen cycling and
material fluxes in mesopelagic systems need to address these organisms.

Another example concerns dinitrogen fixation, the ultimate process supplying fixed nitrogen to the ocean
over long timescales. The principal nitrogen-fixing organism in the central gyres has been assumed to be the
large filamentous cyanobacterium Trichodesmium (Karl et al. 1997). This organism exists as large bundles of
filaments a few mm long, is favored in warm, calm seas, lives mostly at the surface, where irradiance is greatest,
and is resistant to grazing. Trichodesmium is now represented in several models. For this sea-surface-dwelling
organism, the main challenges for modelers are high light tolerance and mechanisms for acquiring iron and
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phosphorus in nutrient-depleted waters (Hood et al. 2004; Fennel et al. 2002; Neumann 2000). Recently
genomic probing for the gene that expresses the nitrogen-fixing nitrogenase enzyme has revealed that there are
also abundant, small unicellular N-fixers (Zehr et al. 2001), and that these are sufficiently abundant to be a
significant source of fixed nitrogen (Montoya et al 2004). Indeed, Montoya et al (2004) concluded that they may
fix as much or more nitrogen than Trichodesmium in the North Pacific gyre. Unicellular N-fixers are found
deeper in the water column and so must be less vulnerable to turbulence and can tolerate low light. Because they
are small, they are probably vulnerable to microzooplankton grazers. It follows from these observations that the
population dynamics and distributions of the unicellular N-fixers may be quite distinct from Trichodesmium.
Future models of oceanic N dynamics must address the diversity of N-fixing organisms and their dynamics in
order to represent the N-fixation process correctly (Arrigo 2005). Furthermore, inclusion of both classes of N-
fixers is probably also critical if we are to predict the response of the ocean nitrogen fixation system to regime
shifts and climate change.

IMPACT AND APPLICATIONS
PARADIGM sceintists are developing new community models of ocean biogeochemistry and ecology on global
scales, comprising complex ecosystem dynamics based on functional groups (e.g., Archaea, diatoms, copepods,
gelatinous predators), individual keystone species (e.g., Trichodesmium, Euphausia superba) and multi-element
limitation and cycling (e.g., C, N, P, Si, Fe). These models include new parameterizations of mesoscale and
submesoscale processes that are especially important in biological/physical coupling. Data assimilation and data
fusion are being used to improve model formulation and to validate model performance. New approaches to
software development are being used to simplify the addition of new ocean processes. The models we are
developing are capable of emergent behavior, testing the hypothesis that fundamental domain shifts occur in
response to climate change.
     PARADIGM research is improving the linkages between modelers and field oceanographers by creating
an environment where model assumptions can be explored, model performance rigorously evaluated, and new
ideas and hypotheses formulated and tested. Through regular interactions, data visualization, and focused
workshops, PARADIGM is serving as an intellectual hub for the study of ocean ecology and biogeochemistry
with numerical models as the tool. By making such models more transparent to the non-modeler, we are
enabling the study of complex, global-scale processes in a rigorous open manner. In one specific example, our
development of an open biogeochemical modeling tool as part of the MITgcm (http://mitgcm.org) provides a
tool for the wider community which will also encourage scientific communication within the community of MIT
model users.

TRANSITIONS
To benefit from relationships outside our consortium, a fundamental objective is to make all of our research
widely available to the scientific community, both through traditional mechanisms (e.g. workshops) and
innovative modes of communication (web-based interactive exchanges). Continuing in the PARADIGM
tradition of writing overview articles that reach the broader scientific community, “Modeling Ocean
Ecosystems: The PARADIGM Program” will be published in Oceanography Magazine in March 2006. In
addition, we will be updating our website for the formal distribution of forward model and data assimilation
products, computational algorithms, etc. (http://www.gso.uri.edu/paradigm/).

RELATED PROJECTS
A sub-set of the NOPP investigators (e.g., Hofmann, McClain, Haidvogel, Yoder) along with other investigators
developed a proposal that was funded as part of the NASA Interdisciplinary Science initiative. This project
started in late summer 2004 and is intended to augment the coastal component of the PARADIGM. The overall
goal of the project is to develop carbon budgets for continental shelf waters of the Mid-Atlantic Bight (MAB)
and South Atlantic Bight (SAB) along the east coast of the United States. This goal is addressed through five
specific research questions:
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1. What are the relative carbon inputs to the MAB and SAB from terrestrial run-off and in situ biological
processes?

2. What is the fate of dissolved organic carbon (DOC) input to the continental shelf from estuarine and
riverine systems?

3. What are the dominant food web pathways that control carbon cycling and flux in this region?
4. Are there fundamental differences in the manner in which carbon is cycled on the continental shelves of

the MAB and SAB?
5. Is the carbon cycle of the MAB and SAB sensitive to climate change?

To date, excellent progress has been made on developing coupled circulation-biogeochemical-carbon
models for the MAB and SAB.  Progress has also been made in analyses of satellite-derived data sets (e.g. ocean
color) and historical hydrographic measurements (e.g. salinity and oxygen) from the two regions, development
of data assimilative biological models, and interfacing the MAB and SAB coupled models with climate models
developed for the U.S. mid-Atlantic region.  The NASA IDS program also includes a limited field component
that is providing measurements of many of the quantities and variables included in the biogeochemical and
carbon models. Several papers describing results from the modeling, data analyses and field measurement
activities are now in preparation.  As part of the NASA IDS program, we organized a special session on carbon
cycling in continental shelf systems for the 2006 Ocean Sciences Meeting. For more information on the NASA
IDS program please visit the project web site: http://www.ccpo.odu.edu/Research/US-ECoS/index.html.
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